Lectures

Lecture 1 

Blackbody radiation

Lecture 2 

Photoelectric effect

Lecture 3 

Compton effect

 

Lecture 4

The electron [e/m, e]
Continuous X-ray spectrum
X-ray Bragg diffraction in crystals
De Broglie matter waves

 

Lecture 5 

Thomson's, Rutherford's models of the atom

 

Lecture 6 

Stability of the atom, atomic spectra, Bohr's model of the atom
Franck Hertz, X-ray line spectra
Correspondence principle, Wilson Sommerfeld quantization rules

 

Lecture 7

Wave-particle duality
Wave packets
Heisenberg uncertainty principle

 

Lecture 8

Time-dependent Schrodinger equation (1 dimension)
Probability interpretation of the wave function
Probability density and current, flux conservation

 

Lecture 9

Expectation values
The momentum in QM, Ehrenfest theorem
Hermitian operators, uncertainty relations

 

Lecture 10

Time-independent Schrodinger equation (1 dimension)
Eigenvalues and eigenfunctions
Particle in a box

 

 

 

Lecture 11

The expansion postulate
Momentum eigenfunctions and the free particle
Parity, degeneracy

 

 

 

Lecture 12

Potential step, well (scattering states), barrier (tunneling)
Potential well (bound states)
Harmonic oscillator potential
One-dimensional potentials

 

 

 

Lecture 13

General structure of wave mechanics
Vector space, scalar product, adjoint operator
Simultaneous eigenfunctions and commuting operators
Time dependence of expectation values

 

Lecture 14

The Schrodinger equation (3 dimensions)
Central potentials: Angular momentumThe radial equation
Coulomb potential: The Hydrogen atom

 

Lecture 15 

Summary and future outlook

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class: 
Quantum Theory 1 (77318)